Micu-type invariants for the Casimir operators of the Lie superalgebras osp(1,2n): application to the algebra $\operatorname{osp}(1,4)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171579
(http://iopscience.iop.org/0305-4470/17/8/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:34

Please note that terms and conditions apply.

Micu-type invariants for the Casimir operators of the Lie superalgebras $\operatorname{osp}(1,2 n)$: application to the algebra osp $(1,4)$

Miroslav Bednář \dagger, Bruce H J McKellar \ddagger and Vladimír F Šachl \dagger
\dagger Institute of Physics, Czechoslovak Academy of Sciences, 18040 Prague 8, Czechoslovakia
\ddagger School of Physics, University of Melbourne, Parkville, Victoria, Australia 3052

Received 1 April 1982, in final form 30 November 1983

Abstract

A construction of the Casimir operators of higher degree of the Lie superalgebras $\operatorname{osp}(1,2 n)$ by a method which represents a generalisation of the method proposed by Micu for the construction of the Casimir operators of the Lie algebras, namely the algebras $\mathrm{Sp}(2 n)$, is suggested.

The method applied has a close connection with Backhouse's method of construction of Casimir operators for the semisimple Lie superalgebras.

Above all the fourth-order coefficients of the Casimir operators of superalgebras $\operatorname{osp}(1,2 n)$ are shown to play a determining role for the Casimir operators of higher degrees.

1. Introduction

It is well known that in the theory of the classical semisimple Lie algebras (sslas) there exist some formally different methods, which enable us to construct the independent Casimir operators of higher degrees (Racah 1951, Okubo 1962, Perelomov and Popov 1965, Nwachuku and Rashid 1976, Agrawala 1979, Micu 1964). The formal differences of the particular methods of construction are usually connected with the specific choice of the basis in the corresponding Lie algebra.

The situation for the semisimple Lie superalgebras (ssGLs) is similar, e.g. three formally different methods have been suggested for algebras of the type $\operatorname{osp}(1,2 n)$, ($n=1,2, \ldots$), (Bednář and Šachl 1978a, b, 1979, Backhouse 1977, Jarvis and Green 1979) which are suitable for the construction of the Casimir operators of higher degrees. The particular Casimir operators of higher degrees are usually expressed in a global form relatively easily by means of the sums of specific products (of the corresponding degree) of generators of the given algebra.

However, for many specific applications, it is necessary to know the explicit formulae for the Casimir operators in terms of the independent generators.

To obtain these particular formulae, it is naturally desirable to apply the simplest possible method for their construction. Apart from the above mentioned methods (Bednář and Šachl 1978a, Backhouse 1977, Jarvis and Green 1979), a further method of construction of the independent higher-order Casimir operators for the superalgebras $\operatorname{osp}(1,2 n)$ exists-a generalisation of the well known Micu constructionwhich we present in this paper.

After introducing the general definition of the Backhouse type in § 2, the independent Casimir operators of the second and fourth degree of the superalgebra $\operatorname{osp}(1,4)$ are studied in detail in §3. Amongst other things, it is shown that the only coefficients we have to know for the construction of the independent Micu-type Casimir operators of higher degree are those of fourth order for the given Lie superalgebra which are also called graded Lie algebras.

2. Casimir operators of higher degrees of the Backhouse type

One of the methods, with the help of which it is possible to obtain the explicit formulae for the Casimir operators of higher degrees in terms of the independent generators of a given semisimple Lie superalgebra, is that which has been presented by Backhouse (Backhouse 1977). This method represents an immediate generalisation of the Racah method, well known from the classical Lie algebras.

Let the semisimple Lie superalgebra \mathscr{L} be generated by the operators $X_{\omega}(\omega)$ $1,2, \ldots, n$), for which the relations

$$
\begin{equation*}
\left\langle X_{\omega}, X_{\omega^{\prime}}\right\rangle=C_{\omega \omega^{\prime}}^{\rho} X_{\rho} \tag{1}
\end{equation*}
$$

hold.
Here the bracket \langle,$\rangle is defined as$

$$
\begin{equation*}
\left\langle X_{\omega}, X_{\omega^{\prime}}\right\rangle=X_{\omega} X_{\omega^{\prime}}-(-1)^{\operatorname{grad}(\omega) \operatorname{grad}\left(\omega^{\prime}\right)} X_{\omega^{\prime}} X_{\omega}, \tag{2}
\end{equation*}
$$

in which $\operatorname{grad}(\omega), \operatorname{grad}\left(\omega^{\prime}\right) \in\{0,1\}$ represent the grades of the corresponding generators X_{ω} and $X_{\omega^{\prime}} ; C_{\omega \omega^{\prime}}^{\rho}$ is the structure of the corresponding semisimple Lie superalgebra.

The Casimir operators of the nth degree of the Backhouse type are then given by (Scheunert et al 1977)

$$
\begin{equation*}
K_{n}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} \ldots X_{\omega_{n}}\right) X^{\omega_{n}} \ldots X^{\omega_{1}} \tag{3}
\end{equation*}
$$

where $X_{\omega_{1}}, \ldots, X_{\omega_{n}}$ are matrices which represent the generators $X_{\omega_{1}}, \ldots, X_{\omega_{n}}$ in the specific irreducible representation R of the algebra \mathscr{L}. In the irreducible representation the operator γ_{0} is realised by a matrix which fulfils the conditions

$$
\begin{array}{ll}
{\left[\gamma_{0}, X_{\omega}\right]=0} & (\text { for } \omega \text { for which } \operatorname{grad}(\omega)=0) \tag{4}\\
\left\{\gamma_{0}, X_{\omega}\right\}=0 & (\text { for } \omega \text { for which } \operatorname{grad}(\omega)=1)
\end{array}
$$

Here, the operators X^{ω} can be expressed by means of X_{ω} through the relation

$$
\begin{equation*}
X^{\omega}=g_{\nu}^{\omega} X_{\nu} \tag{5}
\end{equation*}
$$

where $g^{\mu \nu}$ are the matrix elements of the inverse matrix of the matrix with elements $g_{\mu \nu}=\operatorname{Tr}\left(\gamma_{0} X_{\mu} X_{\nu}\right)$, whose components realise the metric tensor of the superalgebra \mathscr{L}.

The Casimir operators of the nth degree K_{n} fulfil the equations

$$
\begin{equation*}
\left[K_{n}, X_{n}\right]=0, \tag{6}
\end{equation*}
$$

i.e., they commute with all the generators of the superalgebra \mathscr{L}.

It is evident that if we consider the semisimple Lie algebra L (where all the generators are specified by the zero grade) instead of only the semisimple Lie superalgebra \mathscr{L} we obtain, with the help of the above mentioned construction, the Racah
type Casimir operators, provided the irreducible representation R (in which the matrices X_{ω} are realised) is the adjoint representation of the corresponding algebra L.

For the practical construction of the Casimir operator K_{n} it is, of course, most advantageous to calculate the coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}}, \ldots, X_{\omega_{n}}\right)$ which enter in the Casimir operator K_{n} in the simplest possible non-trivial representation of the superalgebra \mathscr{L}, i.e., in the fundamental lowest-dimensional non-trivial representation of the given algebra.

From the Backhouse construction it is obvious that for the construction of the Casimir operator K_{m} of the m th degree, it is necessary to know the coefficients of the m th order $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}}, \ldots, X_{\omega_{n}}\right)$.

Therefore, we need to know for the construction of all independent Casimir operators of the superalgebra $\operatorname{osp}(1,2 n)$ the coefficients of all degrees explicitly, i.e., of the second, fourth, ... and $2 n$th degree.

However, we can see from the Micu construction (Micu 1964) of the Casimir operators of the Lie algebra of the type $\operatorname{Sp}(2 n)$ that the only coefficients we have to know are the coefficients of the fourth order. Then, we are able to construct the independent Casimir operators of any higher degree.

An analogous statement remains valid also for the Lie superalgebras $\operatorname{osp}(1,2 n)$, for which it is possible by means of the coefficients of the fourth order $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{\mathrm{d}}}\right)$ to construct the independent operators

$$
\begin{align*}
& T_{\omega_{1}}^{(2)}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) X^{\omega_{4}} X^{\omega_{3}} X^{\omega_{2}}, \\
& T_{\omega_{1}}^{(3)}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) T^{(2) \omega_{4}} X^{\omega_{3}} X^{\omega_{2}}, \tag{7}\\
& \vdots \\
& T_{\omega_{1}}^{(n)}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) T^{(n-1) \omega_{4}} X^{\omega_{3}} X^{\omega_{2}},
\end{align*}
$$

with the help of which the independent Casimir operators of even degree are given by

$$
\begin{equation*}
C_{4}=T_{\omega}^{(2)} X^{\omega}, \ldots \quad C_{2 n}=T_{\omega_{1}}^{(n)} X^{\omega_{1}} \tag{8}
\end{equation*}
$$

The remaining independent Casimir operator of the second degree is simply

$$
C_{2}=X^{\omega} X_{\omega}
$$

The Casimir operators of odd degree such as C_{3}, C_{5}, \ldots may be constructed, by means of the third-degree coefficient $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}}\right)$, in the following way

$$
\begin{align*}
& C_{3}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}}\right) X^{\omega_{3}} X^{\omega_{2}} X^{\omega_{1}}, \\
& C_{5}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}}\right) X^{\omega_{3}} X^{\omega_{2}} T^{\omega_{1}} . \tag{9}
\end{align*}
$$

A similar method of construction can be used for the higher-degree Casimir operators for any semisimple Lie superalgebra. Of course, for superalgebras of the type osp($1,2 n$)

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}}\right) X^{\omega_{3}} X^{\omega_{2}}=k X_{\omega_{1}} \tag{10}
\end{equation*}
$$

is valid, where k denotes a numerical normalisation factor. It is obvious that the aforementioned Casimir operators of odd degree $C_{2 k+1}$ then reduce themselves to those of even degree $C_{2 k}$ and $C_{2 k+1}$ do not therefore represent the independent Casimir operators of the superalgebras $\operatorname{osp}(1,2 n)$.

3. Casimir operators of the Lie superalgebra $\operatorname{osp}(1,4)$

In the Racah Weyl basis the algebra osp $(1,4)$ is defined by the generators X_{ω}, for which $g(\omega)=0$, which form the underlying Lie subalgebra $\mathrm{Sp}(4)$ with the generators $E_{\alpha}, E_{-\alpha}$ and $H_{i}(\alpha=1,2,3,4 ; i=1,2)$. To each α there always corresponds the root $r(\alpha)$ (see figure 1).

Figure 1. The root diagram of the algebra $\mathrm{Sp}(4)$.

The operators H_{i} are generators of the Cartan subalgebra. The structure of the $\mathrm{Sp}(4)$ algebra of operators E_{α}, H_{i} is described by the commutation relations (Behrends et al 1962) as

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0, \quad\left[H_{i}, E_{\alpha}\right]=r_{i}(\alpha) E_{\alpha},} \\
& {\left[E_{\alpha}, E_{-\alpha}\right]=\sum_{i=1}^{2} r_{i}(\alpha) H_{i}, \quad\left[E_{\alpha}, E_{\beta}\right]=C_{\alpha \beta}^{\gamma} E_{\gamma}} \tag{11}
\end{align*}
$$

in which the constants $C_{\alpha \beta}^{\gamma} \neq 0$ only in the case where the equation $r(\gamma)=r(\alpha)+r(\beta)$ is valid. Therefore, if we denote $C_{\alpha \beta}^{\gamma}$ by $N_{\alpha \beta}=C_{\alpha \beta}^{\gamma}$, the non-zero structure constants are given by

$$
\begin{aligned}
N_{24}=N_{4-2} & =N_{-4-2}=N_{2-4}=N_{14}=N_{-21}=N_{-23}=N_{3-4} \\
& =N_{-12}=N_{-4-1}=N_{4-3}=N_{-32}=1 / \sqrt{6} .
\end{aligned}
$$

The other structure constants $r_{i}(\alpha)$ are obvious from figure 1.
The generators X_{ω} for which $g(\omega)=1$ holds are denoted by $V_{k}(k=1,2,3,4)$. Each of these operators is specified in the weight diagram of the fundamental multiplet $\{4\}$ of the Lie algebra $\operatorname{Sp}(4)$ by the corresponding highest weight $\boldsymbol{\lambda}(k)$ (see figure 2).

The commutation and anticommutation relations of the operators H_{i}, E_{α} and V_{k} are given by

$$
\begin{align*}
& {\left[E_{\alpha}, V_{k}\right]=\sum_{l}\left(e_{\alpha}\right)_{l k} V_{l},} \\
& {\left[H_{i}, V_{k}\right]=\sum_{l}\left(h_{i}\right)_{l k} V_{l}} \tag{12}\\
& \left\{V_{k} V_{k^{\prime}}\right\}=-12\left(\sum_{\alpha= \pm 1, \ldots, \pm 4}(C e)_{k k^{\prime}} E_{-\alpha}+\sum_{i=1,2}\left(C h_{i}\right)_{k k^{\prime}} H_{i}\right),
\end{align*}
$$

Figure 2. The weight diagram of the fundamental multiplet $\{4\}$ of the algebra $\mathrm{Sp}(4)$.
where $\left(e_{\alpha}\right)_{l k}$ and $\left(h_{i}\right)_{l k}$ are the matrix elements of the four by four matrices which realise the algebra $\operatorname{Sp}(4)$ in the fundamental representation and $C_{k k^{\prime}}$ are the elements of the matrix of 'charge' conjugation (see appendix 1).

Equations (11) and (12) then describe the structure of the Lie superalgebra osp(1, 4) in the Racah Weyl basis.

The fundamental, i.e., the lowest-dimensional representation of the algebra of operators H_{i}, E_{α} and V_{k} is the five-dimensional representation (for its realisation see appendix 1). We are going to apply just this simplest non-trivial representation for the calculation of the coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega} X_{\omega^{\prime}} \ldots\right)$, with the help of which it is possible to construct the Casimir operators of higher degrees, i.e., in our case the K_{2} and K_{4}.

First of all, we find the components $g_{\omega \omega}$ of the metric tensor g, defined by the equation

$$
\begin{equation*}
g_{\omega \omega^{\prime}}=\operatorname{Tr}\left(\gamma_{0} X_{\omega} X_{\omega^{\prime}}\right) \tag{13}
\end{equation*}
$$

By using the matrices for X_{ω} and γ_{0} (see appendix 1) we find that the only non-zero components $g_{\omega \omega^{\prime}}$ of the metric tensor g are

$$
\begin{array}{ll}
g_{\alpha \beta}=\operatorname{Tr}\left(E_{\alpha} E_{\beta}\right)=\frac{1}{6} \delta_{\alpha-\beta} & (\alpha, \beta= \pm 1, \pm 2, \pm 3, \pm 4), \\
g_{l j}=\operatorname{Tr}\left(H_{l} H_{j}\right)=\frac{1}{6} \delta_{l j}, & \\
g_{k l}=\operatorname{Tr}\left(\gamma_{0} V_{k} V_{l}\right)=\frac{1}{6} C_{k l} & (k, l=1,2,3,4) .
\end{array}
$$

The inverse metric tensor g^{-1}, whose components are denoted by $g^{\alpha \beta},\left(\left(g^{-1}\right)_{\alpha \beta}=g^{\alpha \beta}\right)$, has the following non-zero components

$$
\begin{array}{ll}
g^{\alpha \beta}=6 \delta_{-\alpha \beta} & (\alpha, \beta= \pm 1, \pm 2, \pm 3, \pm 4) \\
g^{\prime \prime}=6 \delta_{i j} & (i, j=1,2) \\
g^{k l}=-6 C_{k l} & (k, l=1,2,3,4)
\end{array}
$$

If we define the operator X^{ω} by means of $X_{\omega^{\prime}}$ by the relation

$$
\begin{equation*}
X^{\omega}=g^{\omega \omega^{\prime}} X_{\omega^{\prime}} \tag{14}
\end{equation*}
$$

then we obtain for the particular components X^{ω} the relations

$$
\begin{array}{ll}
E^{\alpha}=6 E_{-\alpha}, & V^{2}=-6 V_{3}, \\
H^{i}=6 H_{i}, & V^{3}=6 V_{2}, \\
V^{1}=6 V_{4}, & V^{4}=-6 V_{1} .
\end{array}
$$

By using these relations, it is possible to write down the quadratic Casimir operator of the superalgebra $\operatorname{osp}(1,4)$

$$
\begin{equation*}
K_{2}=\operatorname{Tr}\left(\gamma_{0} X_{\omega} X_{\omega^{\prime}}\right) X^{\omega^{\prime}} X^{\omega}=g_{\omega \omega^{\prime}} X^{\omega^{\prime}} X^{\omega} \tag{15}
\end{equation*}
$$

as follows
$K_{2}=6\left(\sum_{\alpha=1}^{4}\left(E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha}\right)+H_{1}^{2}+H_{2}^{2}+V_{1} V_{4}-V_{4} V_{1}+V_{3} V_{2}-V_{2} V_{3}\right)$.
If only the even generators $E_{\alpha}, E_{-\alpha}$ and H_{t} are retained we obtain the quadratic Casimir operator of the algebra $\mathrm{Sp}(4)$.

As

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma_{0} \boldsymbol{X}_{\omega_{1}} \boldsymbol{X}_{\omega_{2}} \boldsymbol{X}_{\omega_{3}}\right) \boldsymbol{X}^{\omega_{3}} \boldsymbol{X}^{\omega_{2}}=\frac{5}{4} \boldsymbol{X}_{\omega_{1}} \tag{16}
\end{equation*}
$$

is valid it is clear that the Casimir operator of the third degree reduces itself to that of the second degree and the following relation holds

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}}\right) X^{\omega_{3}} X^{\omega_{2}} X^{\omega_{1}}=\frac{5}{4} X_{\omega_{1}} X^{\omega_{1}} \tag{17}
\end{equation*}
$$

The Casimir operator of the fourth degree of the superalgebra $\operatorname{osp}(1,4)$ in the Racah Weyl basis can be written in the form

$$
\begin{equation*}
K_{4}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) X^{\omega_{4}} X^{\omega_{3}} X^{\omega_{2}} X^{\omega_{1}} \tag{18}
\end{equation*}
$$

where the non-zero coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right)$, by which the corresponding terms $X^{\omega_{4}} X^{\omega_{3}} X^{\omega_{2}} X^{\omega_{1}}$ will contribute to the Casimir operator, are summarised in tables 1 and 2 (see appendix 2).

Using these coefficients the fourth-order Casimir operator can be written down immediately and by using the rules of the superalgebra osp $(1,4)$, it can be rewritten into the following simpler form

$$
\begin{equation*}
K_{4}=C_{4}^{\prime}+D_{4} . \tag{19}
\end{equation*}
$$

C_{4} is the fourth-order Casimir operator of the underlying algebra $\operatorname{Sp}(4)$:

$$
\begin{align*}
\frac{1}{9} C_{4}^{\prime}=\sum_{\alpha=2,-4}[& \sum_{i=1,2}\left(48 H_{i}^{4}+2\left(\left\{H_{\imath}^{2},\left\{E_{\alpha}, E_{-\alpha}\right\}\right\}+\left\{\left\{H_{i}, E_{\alpha}\right\},\left\{H_{i}, E_{-\alpha}\right\}\right\}\right)\right) \\
& \times(-1)^{\alpha / 2}\left(\left\langle H_{1} E_{\alpha}, H_{2} E_{-\alpha}\right\rangle_{+}^{+}+\left\langle H_{1} E_{-\alpha}, H_{2} E_{\alpha}\right\rangle_{+}^{+}\right)+4\left\langle E_{-\alpha} E_{\alpha}, E_{-\alpha} E_{\alpha}\right\rangle_{+}^{+} \\
& \left.+2\left(\left\langle E_{\alpha} E_{-\alpha}, E_{1} E_{-1}\right\rangle_{+}^{+}+\left\langle E_{\alpha} E_{-1}, E_{1} E_{-\alpha}\right\rangle_{+}^{+}\right)\right] \\
& +2 \sum_{\alpha=2,4}\left(\left\langle E_{\alpha} E_{-\alpha}, E_{3} E_{-3}\right\rangle_{+}^{+}+\left\langle E_{\alpha} E_{-3}, E_{3} E_{-\alpha}\right\rangle_{+}^{+}\right) \\
& +4\left(\left\{H_{1}^{2},\left\{E_{1}, E_{-1}\right\}\right\}+\left\{H_{2}^{2},\left\{E_{3}, E_{-3}\right\}\right\}\right)+2\left\{E_{1}, E_{-1}\right\}+2\left\{E_{3}, E_{-3}\right\} \\
& +8 \sum_{\beta=1,3}\left\langle E_{\beta} E_{-\beta}, E_{\beta} E_{-\beta}\right\rangle_{+}^{+}+\frac{1}{6 \sqrt{3}}\left(H_{2}-H_{1}\right) \tag{20}\\
& +4\left(\left\langle E_{2} E_{-3}, E_{2} E_{-1}\right\rangle_{+}^{+}+\left\langle E_{-2} E_{3}, E_{-2} E_{1}\right\rangle_{+}^{+}-\left\langle E_{4} E_{-3}, E_{4} E_{1}\right\rangle_{+}^{+}\right. \\
& \left.-\left\langle E_{-4} E_{3}, E_{-4} E_{-1}\right\rangle_{+}^{+}\right)-\sqrt{2}\left(\left\langle E_{-2} E_{3}, E_{-4} H_{1}\right\rangle_{+}^{+}+\left\langle E_{-2} H_{1}, E_{-4} E_{3}\right\rangle_{+}^{+}\right. \\
& +\left\langle E_{2} E_{-3}, E_{4} H_{1}\right\rangle_{+}^{+}+\left\langle E_{2} H_{1}, E_{4} E_{-3}\right\rangle_{+}^{+}+\left\langle E_{-2} E_{1}, E_{4} H_{2}\right\rangle_{+}^{+}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\left\langle E_{-2} H_{2}, E_{4} E_{1}\right\rangle_{+}^{+}+\left\langle E_{2} E_{-1}, E_{-4} H_{2}\right\rangle_{+}^{+}+\left\langle E_{2} H_{2}, E_{-4} E_{-1}\right\rangle_{+}^{+}\right) \\
& +\sqrt{2}\left(\left\langle H_{2} E_{2}, E_{4} E_{-3}\right\rangle_{+}^{+}-\left\langle H_{2} E_{4}, E_{2} E_{-3}\right\rangle_{+}^{+}+\left\langle H_{1} E_{-2}, E_{4} E_{1}\right\rangle_{+}^{+}\right. \\
& -\left\langle H_{1} E_{4}, E_{-2} E_{1}\right\rangle_{+}^{+}+\left\langle H_{2} E_{-2}, E_{-4} E_{3}\right\rangle_{+}^{+}-\left\langle H_{2} E_{-4}, E_{-2} E_{3}\right\rangle_{+}^{+} \\
& \left.+\left\langle H_{1} E_{2}, E_{-4} E_{-1}\right\rangle_{+}^{+}-\left\langle H_{1} E_{-4}, E_{2} E_{-1}\right\rangle_{+}^{+}\right)
\end{aligned}
$$

and the part D_{4} with the odd operators V_{α} (see appendix 2) is given by

$$
\begin{align*}
\frac{1}{9} D_{4}=-\left\langle E_{2} H_{1}\right. & \left., V_{4} V_{3}\right\rangle_{+}^{-}-\left\langle H_{1} V_{4}, V_{3} E_{2}\right\rangle_{-}^{-}+\left\langle H_{1} E_{4}, V_{3} V_{1}\right\rangle_{+}^{-} \\
& +\left\langle E_{4} V_{3}, V_{1} H_{1}\right\rangle_{-}^{-}+\left\langle H_{2} E_{2}, V_{4} V_{3}\right\rangle_{+}^{-}+\left\langle E_{2} V_{4}, V_{3} H_{2}\right\rangle_{-}^{-} \\
& +\left\langle E_{4} H_{2}, V_{3} V_{1}\right\rangle_{+}^{-}+\left\langle H_{2} V_{3}, V_{1} E_{4}\right\rangle_{-}^{-\left\langle H_{2} E_{-2}, V_{1} V_{2}\right\rangle_{+}^{-}} \\
& -\left\langle E_{-2} V_{1}, V_{2} H_{2}\right\rangle_{-}^{-}+\left\langle E_{-4} H_{2}, V_{2} V_{4}\right\rangle_{+}^{-}+\left\langle H_{2} V_{2}, V_{4} E_{-4}\right\rangle_{-}^{-} \\
& +\left\langle H_{1} E_{-4}, V_{2} V_{4}\right\rangle_{+}^{-}+\left\langle E_{-4} V_{2}, V_{4} H_{1}\right\rangle_{-}^{-}+\left\langle E_{-2} H_{1}, V_{1} V_{2}\right\rangle_{+}^{-} \\
& +\left\langle H_{1} V_{1}, V_{2} E_{-2}\right\rangle_{-}^{-}\left\langle H_{1}^{2}, V_{4} V_{1}\right\rangle_{+}^{-}\left\langle V_{4} H_{1}, H_{1} V_{1}\right\rangle_{-}^{-} \\
& +\left\langle H_{2}^{2}, V_{3} V_{2}\right\rangle_{+}^{-}+\left\langle V_{3} H_{2}, H_{2} V_{2}\right\rangle_{-}^{-}+\left\langle E_{-2} E_{2}, V_{3} V_{2}^{-}\right\rangle_{+}^{-} \\
& +\left\langle E_{2} V_{3}, V_{2} E_{-2}^{-}\right\rangle_{-}^{-}+\left\langle E_{-4} E_{4}, V_{3} V_{2}\right\rangle_{+}^{-}+\left\langle E_{4} V_{3}, V_{2} E_{-4}^{-}\right\rangle_{-}^{-} \\
& -\left\langle E_{4} E_{-4}, V_{4} V_{1}\right\rangle_{+}^{-}-\left\langle E_{-4} V_{4}, V_{1} E_{4}\right\rangle_{-}^{-} \tag{21}\\
& +2\left(\left\langle E_{-3} E_{3}, V_{3} V_{2}^{-}\right\rangle_{+}^{-}+\left\langle E_{3} V_{3}, V_{2} E_{-3}^{-}\right\rangle_{-}^{-}\left\langle E_{-1} E_{1}, V_{4} V_{1}\right\rangle_{+}^{-}\right. \\
& \left.-\left\langle E_{1} V_{4}, V_{1} E_{-1}\right\rangle_{-}^{-}\right)+\left\langle V_{1} V_{2}, V_{3} V_{4}\right\rangle_{+}^{--\left\langle V_{1} V_{3}, V_{2} V_{4}\right\rangle_{+}^{+}} \\
& +\left\{\left[V_{1}, V_{4}\right],\left[V_{2}, V_{3}\right]\right\}+4\left(\left\{V_{1} V_{4}, V_{4} V_{1}\right\}\right. \\
& \left.-\left\{V_{1} V_{1}, V_{4} V_{4}\right\}+\left\{V_{2} V_{3}, V_{3} V_{2}\right\}-\left\{V_{2} V_{2}, V_{3} V_{3}\right\}\right) \\
& +(4 / \sqrt{6})\left(\left\{E_{1}, V_{4} V_{4}\right\}-\left\{E_{-1}, V_{1} V_{1}\right\}+\left\{E_{3}, V_{3} V_{3}\right\}\right. \\
& \left.-\left\{E_{-3}, V_{2} V_{2}\right\}\right)-2 \sqrt{2}\left(\left\langle H_{1} V_{4}, V_{4} E_{1}\right\rangle_{-}^{-}+\left\langle H_{1} V_{1}, V_{1} E_{-1}\right\rangle_{-}^{-}\right. \\
& \left.+\left\langle H_{2} V_{3}, V_{3} E_{3}\right\rangle_{-}^{-}+\left\langle H_{2} V_{2}, V_{2} E_{-3}\right\rangle_{-}^{-}\right)
\end{align*}
$$

where the brackets $\langle A B, C D\rangle_{+}^{ \pm}$and $\langle A B, C D\rangle_{-}^{ \pm}$are defined with the help of commutators [,] or anticommutators \{, \} as follows:

$$
\begin{align*}
& \langle A B, C D\rangle_{+}^{ \pm}=\{A B, C D\} \pm\{D C, A B\} \tag{22}\\
& \langle A B, C D\rangle_{-}^{ \pm}=[A B, C D] \pm[D C, B A]
\end{align*}
$$

Their symmetric properties with respect to the corresponding permutations, e.g.

$$
\begin{equation*}
\langle A B, C D\rangle_{+}^{+}=\langle D C, B A\rangle_{+}^{+}=\langle C D, A B\rangle_{+}^{+}=\langle B A, D C\rangle_{+}^{+} \text {etc } \tag{23}
\end{equation*}
$$

are obvious.
Let us turn now to the construction of the Casimir operators of higher degrees of the superalgebra $\operatorname{osp}(1,2 n)$ and to the role of the fourth-order coefficients in them.

The Backhouse type of Casimir operator of the sixth degree of the superalgebra $\operatorname{osp}(1,6)$ will be of the form

$$
\begin{equation*}
K_{6}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} \ldots X_{\omega_{6}}\right) X^{\omega_{6}} \ldots X^{\omega_{1}} \tag{24}
\end{equation*}
$$

According to relations (7) and (8) the Casimir operators of the sixth degree can be written down in the form

$$
\begin{equation*}
C_{6}=T_{\omega_{1}}^{(3)} X^{\omega_{1}} \tag{25}
\end{equation*}
$$

where

$$
T_{\omega_{1}}^{(3)}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) T^{(2) \omega_{4}} X^{\omega_{3}} X^{\omega_{2}}
$$

and

$$
\begin{aligned}
T^{(2) \omega_{4}} & =g^{\omega_{4} \omega_{3}} T_{\omega_{3}}^{(2)} \\
& =g^{\omega_{4} \omega_{3}} \operatorname{Tr}\left(\gamma_{0} X_{\omega_{3}} X_{\omega_{4}} X_{\omega_{5}} X_{\omega_{6}}\right) X^{\omega_{6}} X^{\omega_{5}} X^{\omega_{4}}
\end{aligned}
$$

Here the metric tensor $g^{\omega_{4} \omega_{3}}$ is defined and calculated for the superalgebra $\operatorname{osp}(1,2 n)$, $n=2$ in relations (13). As a result we obtain the Casimir operator C_{6} of the sixth degree of the superalgebra $\operatorname{osp}(1,6)$ in the form

$$
\begin{align*}
C_{6}=\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}}\right. & \left.X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right) \operatorname{Tr}\left(\gamma_{0} X_{\omega_{4}} X_{\omega_{3}}\right) \\
& \times \operatorname{Tr}\left(\gamma_{0} X_{\omega_{3}} X_{\omega_{4}} X_{\omega_{5}} X_{\omega_{6}}\right) X^{\omega_{6}} X^{\omega_{5}} X^{\omega_{4}} X^{\omega_{3}} X^{\omega_{2}} X^{\omega_{1}} \tag{26}
\end{align*}
$$

The simplest way of calculating the coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right)$ is their calculation in the fundamental representation, which is in the given case of the superalgebra $\operatorname{osp}(1,6)$ of dimension seven.

If the generators of the underlying Lie superalgebra $\mathrm{Sp}(6)$ are represented by matrices for the indices $i, j=1, \ldots, 6$ the matrix γ_{0} is represented by a diagonal matrix $\gamma_{0}=\left(\gamma_{0 i j}\right)$ where $\gamma_{0 i j}=\delta_{i j}$ for the indices $i, j=1, \ldots, 6$ and $\gamma_{77}=-1$. The odd operators of the considered Lie superalgebra are then represented by seven by seven matrices with non-zero matrix elements in the seventh row and seventh column only. Their explicit form can be obtained by a similar procedure to that which has been used for the case of the superalgebra $\operatorname{osp}(1,4)$ (see the first part of $\S 3$ and appendix 1).

With this basis of our knowledge of the fundamental representation it is possible to calculate the coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{i_{1}}} \ldots X_{\omega_{t_{4}}}\right)$ and with the aid of them to construct all the dependent invariants of the superalgebra $\operatorname{osp}(1,6)$ i.e. the higher invariants of the fourth and sixth degree.

4. Conclusion

We have found the explicit formulae for the Casimir operators of the second (equation (12)) and fourth degree (equations (13) and (16)), in terms of the generators E_{α}, H_{i} and V_{α} for the graded algebra $\operatorname{osp}(1,4)$ and its underlying algebra $\operatorname{Sp}(4)$.

In the same basis, Micu in his paper suggests to construct the Casimir operators of the Lie algebra $\mathrm{Sp}(4)$ not with the help of the above mentioned coefficients $\operatorname{Tr}\left(X_{\omega} X_{\rho} X_{\lambda} X_{\delta}\right)$, but by means of the symmetrised coefficients [$\omega \rho \lambda \delta$] defined through the traces $\operatorname{Tr}\left(X_{\omega} X_{\rho} X_{\lambda} X_{\delta}\right)$ by the relation

$$
\begin{align*}
{[\omega \rho \lambda \delta]=\frac{1}{6} \operatorname{Tr} } & \left(X_{\omega} X_{\rho} X_{\lambda} X_{\delta}+X_{\omega} X_{\lambda} X_{\rho} X_{\delta}+X_{\rho} X_{\omega} X_{\lambda} X_{\delta}\right. \\
& \left.+X_{\rho} X_{\lambda} X_{\omega} X_{\delta}+X_{\lambda} X_{\omega} X_{\rho} X_{\delta}+X_{\lambda} X_{\rho} X_{\omega} X_{\delta}\right) \tag{27}
\end{align*}
$$

It is evident that the coefficients [$\omega \rho \lambda \delta$] are totally symmetric in all four indices. The

Casimir operator of the Micu type for the algebra $\mathrm{Sp}(4)$ is then given by

$$
\begin{equation*}
\sum_{\omega \rho \lambda \delta}[\omega \rho \lambda \delta] X^{\delta} X^{\lambda} X^{\rho} X^{\omega} \tag{28}
\end{equation*}
$$

The only non-zero coefficients in this sum are

$\left[e_{1} e_{-1} h_{1} h_{1}\right]=\frac{1}{216}$,	$\left[h_{1} h_{1} h_{1} h_{1}\right]=\frac{1}{72}$,	$\left[h_{1} h_{1} e_{4} e_{-4}\right]=\frac{1}{216}$,
$\left[e_{1} e_{-2} e_{4} h_{2}\right]=-\frac{1}{216} 2^{-1 / 2}$,	$\left[h_{2} h_{2} h_{2} h_{2}\right]=\frac{1}{72}$,	$\left[h_{2} h_{2} e_{-4} e_{4}\right]=\frac{1}{216}$,
$\left[e_{2} e_{-2} h_{1} h_{2}\right]=\frac{1}{216}$,	$\left[h_{2} h_{2} e_{3} e_{-3}\right]=\frac{1}{216}$,	$\left[h_{1} h_{2} e_{2} e_{-2}\right]=-\frac{1}{432}$,
$\left[e_{1} e_{-1} e_{1} e_{-1}\right]=\frac{1}{108}$,	$\left[h_{2} h_{2} e_{2} e_{-2}\right]=\frac{1}{216}$,	$\left[h_{1} h_{2} e_{4} e_{-4}\right]=\frac{1}{432}$,
$\left[e_{2} e_{2} e_{-2} e_{-2}\right]=\frac{1}{216}$,	$\left[e_{1} e_{3} e_{-2} e_{-2}\right]=\frac{1}{216}$,	$\left[h_{1} e_{-3} e_{2} e_{4}\right]=-\frac{1}{216} 2^{-1 / 2}$,
$\left[e_{4} e_{4} e_{-4} e_{-4}\right]=\frac{1}{216}$,	$\left[e_{-1} e_{3} e_{-4} e_{-4}\right]=-\frac{1}{216}$,	$\left[e_{3} e_{3} e_{-3} e_{-3}\right]=\frac{1}{108}$,
$\left[e_{2} e_{-4} e_{-2} e_{4}\right]=\frac{1}{216}$,		
$\left[e_{3} e_{-3} e_{2} e_{-2}\right]=\frac{1}{216}$,	$\left[e_{3} e_{-3} e_{4} e_{-4}\right]=\frac{1}{216}$,	$\left[e_{1} e_{-1} e_{4} e_{-4}\right]=\frac{1}{216}$,
$\left[e_{1} e_{-1} e_{2} e_{-2}\right]=\frac{1}{216}$,		

and the terms which arise from the above mentioned by the change of the root r to $-r$ at all the generators which enter in the corresponding product. Apart from the last four brackets [, , ,] all the others are given in the paper by Micu (1964) (the last four brackets were obviously forgotten by him).

The Casimir operator of the Micu type is formally evidently much simpler than the Casimir operator

$$
\begin{equation*}
\sum \operatorname{Tr}\left(\boldsymbol{X}_{\omega} \boldsymbol{X}_{\lambda} \boldsymbol{X}_{\rho} \boldsymbol{X}_{\delta}\right) \boldsymbol{X}^{\delta} \boldsymbol{X}^{\rho} \boldsymbol{X}^{\lambda} \boldsymbol{X}^{\omega} \tag{30}
\end{equation*}
$$

The open problem which is left is, if a possibility of defining a generalisation of the brackets for the whole graded Lie algebra $\operatorname{osp}(1,4)$ exists, i.e. whether a possibility of finding the formally simpler formula for the Casimir operator of the fourth degree even for the case of the graded algebra exists.

Appendix 1.

The explicit fundamental (five-dimensional) representation of the graded algebra osp $(1,4)$ (Bednář and Šachl 1978b)

$$
\begin{aligned}
& E_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccccc}
. & . & . & 1 & \cdot \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right), \quad E_{-1}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccccc}
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
1 & . & . & . & . \\
. & . & . & . & .
\end{array}\right), \\
& E_{2}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & . & 1 & . & . \\
. & . & . & -1 & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right), \quad E_{-2}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
. & . & . & . & . \\
. & . & . & . & . \\
1 & . & . & . & . \\
. & -1 & . & . & . \\
. & . & . & . & .
\end{array}\right),
\end{aligned}
$$

$$
\begin{align*}
& E_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & -1 & \cdot & . \\
\cdot & . & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & . & . \\
\cdot & . & . & . & .
\end{array}\right), \\
& E_{-3}=\frac{1}{\sqrt{6}}\left(\begin{array}{rrrrr}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & -1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & .
\end{array}\right), \\
& E_{4}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & . & . & \cdot \\
\cdot & \cdot & 1 & \cdot & . \\
\cdot & \cdot & \cdot & . & .
\end{array}\right), \\
& E_{-4}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right), \\
& H_{1}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
. & \cdot & . & \cdot & \cdot \\
\cdot & \cdot & \cdot & -1 & \cdot \\
. & . & . & . & .
\end{array}\right), \tag{A1}\\
& H_{2}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & -1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & .
\end{array}\right), \\
& V_{1}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right), \\
& V_{2}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & -1 & \cdot & \cdot
\end{array}\right), \\
& V_{3}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right), \\
& V_{4}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{rcccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 \\
-1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right), \\
& \gamma_{0}=\left(\begin{array}{ccccc}
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & -1
\end{array}\right), \\
& C=\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & -1 & \cdot \\
\cdot & \cdot & +1 & \cdot & \cdot \\
\cdot & -1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1
\end{array}\right) .
\end{align*}
$$

Appendix 2.

The coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}} X_{\omega_{2}} X_{\omega_{3}} X_{\omega_{4}}\right)$ of the Casimir operator of the fourth degree of the superalgebra $\operatorname{osp}(1,4)$ with all even generators and those which contain the odd generators can be given in the form of tables 1 and 2 respectively. The corresponding permutations of these generators are given in the first column.
Table 1. The coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}}, X_{\omega_{2}}, X_{\omega_{3}}, X_{\omega_{4}}\right)$ of the GLA $\operatorname{osp}(1,4)$ and LA $\operatorname{Sp}(4)$ with even generators X_{ω} only.

Table 1. (continued)

Numerical factor	$\frac{1}{72}$	$\frac{1}{72}$	$\frac{1}{144}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72}$	$\frac{1}{72}$	$\frac{1}{72}$	$\frac{1}{72}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72}$	$\frac{1}{72}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$
Possible perm. orde of generator	Li			$\begin{aligned} & z_{n}^{n} \\ & \text { ú } \\ & \text { ú } \\ & \text { wi } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \tilde{H}^{\prime} \\ & \omega^{\prime} \\ & \mathbf{L}^{\prime} \end{aligned}$	$\begin{aligned} & w^{N} \\ & w^{w} \\ & w^{2} \\ & w^{0} \end{aligned}$	$\begin{aligned} & 44^{4} \\ & 40 \\ & 44^{4} \\ & \text { 40 } \end{aligned}$	$\begin{aligned} & 4^{4} \\ & 4^{\top} \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & w^{N} \\ & w^{2} \\ & \mathbf{N}^{1} \\ & \text { N } \end{aligned}$			40 00 4 4 4	$\begin{aligned} & \text { u } \\ & \text { ut } \\ & \text { u } \\ & \text { wi } \end{aligned}$	$\begin{aligned} & \sum^{N} \\ & w^{N} \\ & W^{N} \\ & w^{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & W^{N} \\ & \mathbf{N}^{\prime} \end{aligned}$
1234			-1	1	1	1									
1243			1	1	1	1	1	1	1					1	1
1324	1	-1	1	-1	-1					-1	-1	1	-1	-1	-1
1423 1423	1	-1	1	-1			1								
1432			-1	${ }^{-1}$	${ }^{-1}$					-1	-1	1	-1	-1	-1
2134			-			1		1	1					1	1
2143			-1	1	1	1	1	1	1						
2314	1	-1		-1	-1					-1				1	
2341			-1		1	1		1	1	-1	-1	1	-1	-1	-1
2413	1	-1	1	-1	-1					-1					-1
2431 3124			1				1			-1	-1	1	-1	-1	-1
3142	1	-1	1	-1	-1		1								
3214			-1	1	1	1				-1	-1	1	-1	-1	-1
3241	1	-1	1	-1	-1			1	1						
3412			-1	1	1	1				-1	-1	1	-1	-1	-1
3421			1				1	1	1					1	1
4123			-1	1	1	1		1	1						
4132	1	-1	1	-1	-1					-1	-1			-1	-1
4213			,				1			-1	-1	1	-1	-1	-1
421 4 4 4	1	-1	1	-1	${ }^{-1}$					-1	-1	1	-1	-1	-1
4321			-1	1	1	1	1	1	1						

Table 2. The coefficients $\operatorname{Tr}\left(\gamma_{0} X_{\omega_{1}}, X_{\omega_{2}}, X_{\omega_{3}}, X_{\omega_{1}}\right)$ of the GLA $\operatorname{osp}(1,4)$ which contain the odd operators V_{α}.

Numerical factor	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{72 \sqrt{2}}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{72}$	$\frac{1}{144}$	$\frac{1}{72}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$	$\frac{1}{144}$
Possible perm. order of generato	$\begin{aligned} & 7 \\ & y \\ & 3 \\ & Z \end{aligned}$		$\begin{aligned} & \mathbb{N}^{N} \\ & \sum^{2} \\ & \mathbf{N}^{\prime} \end{aligned}$	$\begin{aligned} & \lambda^{m} \\ & 3^{m} \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & z^{N} \\ & \omega^{\prime} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & z^{N} \\ & \mathbf{w}^{0} \\ & z^{2} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { z } \\ & 4 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \mathrm{x}^{N} \\ & \mathbf{N}^{2} \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \dot{4}{ }^{j} \\ & \mathbf{N}^{\prime} \\ & i \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { N } \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & z^{N} \\ & \substack{4 \\ >\\ 2 \\ 2} \end{aligned}$	$\begin{aligned} & \text { In } \\ & \text { N } \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & z^{\prime} \\ & 4 \\ & \Delta^{\prime} \\ & z^{2} \end{aligned}$		$\begin{aligned} & \text { In } \\ & \text { 4 } \\ & \mathbf{N}^{2} \end{aligned}$	$\begin{aligned} & \mathbf{w}^{N} \\ & \mathbf{w}^{2} \\ & z^{2} \end{aligned}$		2 4 3 3	3 3 3 3
1234	-1	-1	1	-1	1	1	1	1						-1	-1	-1	1	-1	1	1	1	1
1243	-1	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1									
1324																						-1
1342	-1	1	1	1	-1	-1	-1	-1	-1	1	-1	-1	-1									
1423	-																					1
1432	-1	1	1	1	1	1	1	1						-1	-1	-1	1	-1	1	1	1	-1
2134	1	-1	-1	-1	1	1	1	1	1	-1	1	1	1									
2143	1	-1	-1	-1	-1	-1	-1	-1						1	1	1	-1	1	-1	-1	-1	1
2314																						1
2341	1	1	-1	1	-1	-1	-1	-1						1	1	1	-1	1	-1	-1	-1	-1
2413																						-1
2431	1	1	-1	1	1	1	1	1	1	-1	1	1	1									
3124	-1	1	1	1	-1	-1	-1	-1	-1	1	-1	-1	-1									
3142																						-1
3214	1	1	-1	1	-1	-1	-1	-1						1	1	1	-1	1	-1	-1	-1	-1
3241																						1
3412	-1	-1	1	-1	1	1	1	1						-1	-1	-1	1	-1	1	1	1	1
3421	1	-1	-1	-1	1	1	1	1	1	-1	1	1	1									
4123	-1	1	1	1	1	1	1	1						-1	-1	-1	1	-1	1	1	1	-1
4132																						1
4213	1	1	-1	1	1	1	1	1	1	-1	1	1	1									
4231																						-1
4312	-1	-1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1									
4321	1	-1	-1	-1	-1	-1	-1	-1						1	1	1	-1	1	-1	-1	-1	1

References

Agrawala V K 1979 J. Math. Phys. 202178
Backhouse N 1977 J. Math. Phys. 18339
Bednář M and Šachl V F 1978a J. Math. Phys. 18339
_ 1978b Low-Dimensional Irreducible and Indecomposable Representations of the GLA(Sp(4); 4), preprint FZU 78-3, Inst. of Physics, Czech. Acad. of Sci., Prague 1979 J. Math. Phys. 20367
Behrends R E, Dreitlein J, Fronsdal C and Lee B W 1962 Rev. Mod. Phys. 341
Jarvis P D and Green H S 1979 J. Math. Phys. 202115
Micu M 1964 Nucl. Phys. 60353
Nwachuku C O and Rashid M A 1976 J. Math. Phys. 171611
Okubo S 1962 Prog. Theor. Phys. 27949
Perelomov A M and Popov V S 1965 Yad. Fiz. 31127
Racah G 1951 Group Theory and Spectroscopy, Institute for Advanced Study, Lecture notes, Princeton, New Jersey
Scheunert M, Nahm W and Rittenberg V 1977 J. Math. Phys. 18155

