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Abstract. A construction of the Casimir operators of higher degree of the Lie superalgebras 
osp(1, 2n) by a method which represents a generalisation of the method proposed by 
Micu for the construction of the Casimir operators of the Lie algebras, namely the algebras 
Sp(2n), is suggested. 

The method applied has a close connection with Backhouse's method of construction 
of Casimir operators for the semisimple Lie superalgebras. 

Above all the fourth-order coefficients of the Casimir operators of superalgebras 
osp( 1 , 2 n )  are shown to play a determining role for the Casimir operators of higher degrees. 

1. Introduction 

It is well known that in the theory of the classical semisimple Lie algebras (SSLAS) 
there exist some formally different methods, which enable us to construct the indepen- 
dent Casimir operators of higher degrees (Racah 1951, Okubo 1962, Perelomov and 
Popov 1965, Nwachuku and Rashid 1976, Agrawala 1979, Micu 1964). The formal 
differences of the particular methods of construction are usually connected with the 
specific choice of the basis in the corresponding Lie algebra. 

The situation for the semisimple Lie superalgebras (SSGLS) is similar, e.g. three 
formally different methods have been suggested for algebras of the type osp(l ,2n) ,  
( a  = 1 , 2 , .  . .), (Bednii  and Sachl 1978a, b, 1979, Backhouse 1977, Jarvis and Green 
1979) which are suitable for the construction of the Casimir operators of higher 
degrees. The particular Casimir operators of higher degrees are usually expressed in 
a global form relatively easily by means of the sums of specific products (of the 
corresponding degree) of generators of the given algebra. 

However, for many specific applications, it is necessary to know the explicit formulae 
for the Casimir operators in terms of the independent generators. 

To obtain these particular formulae, it is naturally desirable to apply the simplest 
possible method for their construction. Apart from the above mentioned methods 
(Bednii and Sachl 1978a, Backhouse 1977, Jarvis and Green 1979), a further method 
of construction of the independent higher-order Casimir operators for the super- 
algebras osp( 1 ,2n)  exists-a generalisation of the well known Micu construction- 
which we present in this paper. 
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After introducing the general definition of the Backhouse type in 0 2, the indepen- 
dent Casimir operators of the second and fourth degree of the superalgebra osp( 1 ,4)  
are studied in detail in § 3. Amongst other things, it is shown that the only coefficients 
we have to know for the construction of the independent Micu-type Casimir operators 
of higher degree are those of fourth order for the given Lie superalgebra which are 
also called graded Lie algebras. 

2. Casimir operators of higher degrees of the Backhouse type 

One of the methods, with the help of which it is possible to obtain the explicit formulae 
for the Casimir operators of higher degrees in terms of the independent generators of 
a given semisimple Lie superalgebra, is that which has been presented by Backhouse 
(Backhouse 1977). This method represents an immediate generalisation of the Racah 
method, well known from the classical Lie algebras. 

Let the semisimple Lie superalgebra 3 be generated by the operators X , ( w  = 
1,2,. . . , n ) ,  for which the relations 

in which grad(w), grad( U’) E ( 0 , l )  represent the grades of the corresponding generators 
X, and Xu,; C”,, is the structure of the corresponding semisimple Lie superalgebra. 

The Casimir operators of the nth degree of the Backhouse type are then given by 
(Scheunert et a1 1977) 

K ,  = Tr( yoX,, . . . X,n)X”’n. . . X”1, (3) 

where Xu,, . . . ,Xu“ are matrices which represent the generators X,,, . . . ,Xu” in the 
specific irreducible representation R of the algebra 2’. In the irreducible representation 
the operator yo is realised by a matrix which fulfils the conditions 

[Yo ,  Xwl = 0 

{Yo ,  xu1 = 0 

(for w for which grad(w) = 0) 

(for w for which grad(@) = 1). 
(4) 

Here, the operators X”’ can be expressed by means of Xu through the relation 

X“ = g,”x,, ( 5 )  

where gcly are the matrix elements of the inverse matrix of the matrix with elements 
gtY = Tr( yoX,X,), whose components realise the metric tensor of the superalgebra 2’. 

The Casimir operators of the nth degree K ,  fulfil the equations 

[K”, X I =  0, (6) 

i.e., they commute with all the generators of the superalgebra 9. 
It is evident that if we consider the semisimple Lie algebra L (where all the 

generators are specified by the zero grade) instead of only the semisimple Lie superal- 
gebra 2 we obtain, with the help of the above mentioned construction, the Racah 
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type Casimir operators, provided the irreducible representation R (in which the 
matrices X ,  are realised) is the adjoint representation of the corresponding algebra L. 

For the practical construction of the Casimir operator K, it is, of course, most 
advantageous to calculate the coefficients Tr( yoXw,, . . . , Xu") which enter in the 
Casimir operator K, in the simplest possible non-trivial representation of the super- 
algebra 3, i.e., in the fundamental lowest-dimensional non-trivial representation of 
the given algebra. 

From the Backhouse construction it is obvious that for the construction of the 
Casimir operator K ,  of the mth degree, it is necessary to know the coefficients of the 
mth order Tr(yoX,,, . . . , Xu"). 

Therefore, we need to know for the construction of all independent Casimir 
operators of the superalgebra osp(l ,2n)  the coefficients of all degrees explicitly, i.e., 
of the second, fourth,. . . and 2nth degree. 

However, we can see from the Micu construction (Micu 1964) of the Casimir 
operators of the Lie algebra of the type Sp(2n) that the only coefficients we have to 
know are the coefficients of the fourth order. Then, we are able to construct the 
independent Casimir operators of any higher degree. 

An analogous statement remains valid also for the Lie superalgebras osp( 1 ,2n) ,  
for which it is possible by means of the coefficients of the fourth order 
Tr( -yoX,, Xu, Xu, Xu4) to construct the independent operators 

T',: = Tr( roX,,X,Xu,X,,)Xw~X"~X~~, 
T?: = Tr( ~oXw,X,X,,X,,) T(2'"4X"3Xw2, 

(7) 

7':' = Tr( yoX,,X,X,,X,,) T(n-1""4Xw3XY~, 

with the help of which the independent Casimir operators of even degree are given by 

c, = T',2'X", . . . c,, = TZ'X"1. (8) 

The remaining independent Casimir operator of the second degree is simply 

c, = xux,. 
The Casimir operators of odd degree such as C3, C5,. . . may be constructed, 

by means of the third-degree coefficient Tr( roXu,X,Xw,), in the following way 

C, = Tr( ~ o X w l X ~ X o J ) X w ~ X w ~ X w ~ ,  

C5 = Tr( yoX,,X,Xw,)X"~X"2T"1. (9) 

A similar method of construction can be used for the higher-degree Casimir operators 
for any semisimple Lie superalgebra. Of course, for superalgebras of the type osp( 1 ,2n )  

Tr( ~ o X w l X , X w 3 ) X u ~ X w ~  = kX,, (10) 

is valid, where k denotes a numerical normalisation factor. It is obvious that the 
aforementioned Casimir operators of odd degree then reduce themselves 
to those of even degree c2k and CZk+, do not therefore represent the independent 
Casimir operators of the superalgebras osp( 1 ,2n) .  
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3. Casimir operators of the Lie superalgebra osp(l,4) 

In the Racah Weyl basis the algebra osp(l ,4)  is defined by the generators X,, for 
which g ( w )  = 0, which form the underlying Lie subalgebra Sp(4) with the generators 
E,, E-, and H,(a = 1 ,2 ,3 ,4 ;  i = 1,2) .  To each a there always corresponds the root 
r ( a )  (see figure 1). 

Figure 1. The root  diagram of the algebra Sp(4). 

The operators Hi are generators of the Cartan subalgebra. The structure of the 
Sp(4) algebra of operators E,, Hi is described by the commutation relations (Behrends 
et a1 1962) as 

[Hi, Hjl= 0 ,  [Hi, Ea1 = ri(a)Ea, 
2 (11) 

[Ea, E-,]= C ri(a)Hi, [E ,  531 = C&E, 
i = l  

in which the constants C& # 0 only in the case where the equation r( y )  = r( a) + r ( p )  
is valid. Therefore, if we denote C& by Nap = C&, the non-zero structure constants 
are given by 

N24 = N4-2 = N-4-2 = N2-4 = N14 = N-21= N-23 = N3-4 

= N-12 = N-4-1 = N4-3 = N-32 = l/&. 

The other structure constants ri (a)  are obvious from figure 1. 
The generators X, for which g ( w )  = 1 holds are denoted by Vk(k  = 1,2 ,3 ,4) .  

Each of these operators is specified in the weight diagram of the fundamental multiplet 
(4) of the Lie algebra Sp(4) by the corresponding highest weight A ( k )  (see figure 2 ) .  

The commutation and anticommutation relations of the operators Hi, E, and v k  

are given by 
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Figure 2. The weight diagram of the fundamental multiplet {4} of the algebra Sp(4). 

where ( ea ) lk  and (h i ) ,&  are the matrix elements of the four by four matrices which 
realise the algebra Sp(4) in the fundamental representation and Ckkr are the elements 
of the matrix of 'charge' conjugation (see appendix 1) .  

Equations ( 1  1) and (12) then describe the structure of the Lie superalgebra osp( 1 , 4 )  
in the Racah Weyl basis. 

The fundamental, i.e., the lowest-dimensional representation of the algebra of 
operators Hi, E, and vk is the five-dimensional representation (for its realisation see 
appendix 1 ) .  We are going to apply just this simplest non-trivial representation for 
the calculation of the coefficients Tr( roX,X,, . . .), with the help of which it is possible 
to construct the Casimir operators of higher degrees, i.e., in our case the K 2  and K4. 

First of all, we find the components g,,. of the metric tensor g, defined by the 
equation 

g,,, = 'W roX,X,,). (13) 
By using the matrices for Xu and yo (see appendix 1 )  we find that the only non-zero 

components g,", of the metric tensor g are 

g,,  = Tr( E,&) = is,-, 

gki =Tr(yOVkV/) = i c k /  

(a, p = *1,*2 ,*3 ,  *4),  

(k ,  1 = 1 , 2 , 3 , 4 ) .  

gll = Tr(H,Hj) = b&,, 

The inverse metric tensor g - ' ,  whose components are denoted by g a p ,  ( ( g - l ) a p  = g m P ) ,  
has the following non-zero components 

g a p  = 66-,p (a, p = * l ,  * 2 ,  *3, *4), 

g" = 66,, ( L j =  1 , 2 ) ,  

gk' =-6Cki ( k ,  I = 1 , 2 ,  3 , 4 ) .  

If we define the operator X" by means of Xu. by the relation 

X" = g""'X,,, 

then we obtain for the particular components X" the relations 

E" = 6E-,,  V2 = -6 V,, 

Hi = 6H,, v3 = 6 v,, 

V' = 6 V4, V4=-6Vl.  
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By using these relations, it is possible to write down the quadratic Casimir operator 
of the superalgebra osp( 1,4)  

K 2  = Tr( y o X ~ w c ) X " ' X "  = g,,,X"'X" (15) 

as follows 

1 K2=6 (E,E- ,+E- ,Ea)+H:+H:+V,V4-V4V,+V3V2-V2V3 . 
(a:l 

If only the even generators E,, E-, and H, are retained we obtain the quadratic 
Casimir operator of the algebra Sp(4). 

As 

Tr( yoX,,X,,X,,)X"~X"2 = 2X W I  (16) 
is valid it is clear that the Casimir operator of the third degree reduces itself to that 
of the second degree and the following relation holds 

Tr( yoX,,X,,X,,)Xw3Xw2Xw~ = 2X,,Xw1. (17) 

The Casimir operator of the fourth degree of the superalgebra osp( 1,4) in the 
Racah Weyl basis can be written in the form 

K4 = Tr ( y0X,, X,X,,X,,) Xw4X03X w2Xy1, (18) 

where the non-zero coefficients Tr( yoX,,X,Xu3XW,), by which the corresponding 
terms Xw4Xw3Xw2Xw1 will contribute to the Casimir operator, are summarised in tables 
1 and 2 (see appendix 2). 

Using these coefficients the fourth-order Casimir operator can be written down 
immediately and by using the rules of the superalgebra osp( 1,4),  it can be rewritten 
into the following simpler form 

K4=Ci+D, .  (19) 

C4 is the fourth-order Casimir operator of the underlying algebra Sp(4): 
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and the part D4 with the odd operators V, (see appendix 2) is given by 

-{E-3, V2v2})-2fi((Hl v4, V4El)I + ( H l v l ,  VIE-l)I 

+(H2 v3, V3E3): +(H2 v29 V2E-3):) 

where the brackets (AB,  CD): and (AB,  CD)? are defined with the help of commu- 
tators [ , ] or anticommutators { , } as follows: 

(AB,  CD); = {AB,  CD} f {DC, A B } ,  

(AB,  CD)? = [AB, CD] f [DC, BA].  

Their symmetric properties with respect to the corresponding permutations, e.g. 

(AB,  CO): = (DC, BA): = (CD, AB):  = ( B A ,  DC): etc, (23) 
are obvious. 

the superalgebra osp(l ,2n)  and to the role of the fourth-order coefficients in them. 

osp( 1,6)  will be of the form 

Let us turn now to the construction of the Casimir operators of higher degrees of 

The Backhouse type of Casimir operator of the sixth degree of the superalgebra 
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According to relations (7) and (8) the Casimir operators of the sixth degree can 
be written down in the form 

C, = Tk3:XU1, ( 2 5 )  

where 

TL3: = Tr( yoX,,X,X,,X,,) T(2)w4Xw3Xw2 

and 
T(z'U4 = gW45 T',2,' 

= g"4"3 Tr( yoX,3X,4X,,X,6)Xw6X"SXW.. 

Here the metric tensor g"4"3 is defined and calculated €or the superalgebra osp(l ,2n) ,  
n = 2 in relations (13). As a result we obtain the Casimir operator c6 of the sixth 
degree of the superalgebra osp( 1 ,6)  in the form 

c6 = Tr( Tr( 'Yox,,Xw,) 

X Tr(y0X,,X,,X,,X,,)X"6X"SX".X"3X"ZX"I. (26) 

The simplest way of calculating the coefficients Tr( y,X,,X,X,,X,,) is their calculation 
in the fundamental representation, which is in the given case of the superalgebra 
osp( 1,6)  of dimension seven. 

If the generators of the underlying Lie superalgebra Sp(6) are represented by 
matrices for the indices i, j = 1, . . . , 6  the matrix yo is represented by a diagonal matrix 
yo = ( yoij)  where yoij = 6,  for the indices i ,  j = 1, . . . , 6  and y77 = - 1. The odd operators 
of the considered Lie superalgebra are then represented by seven by seven matrices 
with non-zero matrix elements in the seventh row and seventh column only. Their 
explicit form can be obtained by a similar procedure to that which has been used for 
the case of the superalgebra osp(l ,4)  (see the first part of 0 3 and appendix 1). 

With this basis of our knowledge of the fundamental representation it is possible 
to calculate the coefficients Tr(yoXw,, . . . Xu, ) and with the aid of them to construct 
all the dependent invariants of the superalgehra osp( 1 ,6)  i.e. the higher invariants of 
the fourth and sixth degree. 

4. Conclusion 

We have found the explicit formulae for the Casimir operators of the second (equation 
(12)) and fourth degree (equations (13) and (16)), in terms of the generators E,, Hi 
and V, for the graded algebra osp(l ,4) and its underlying algebra Sp(4). 

In the same basis, Micu in his paper suggests to construct the Casimir operators 
of the Lie algebra Sp(4) not with the help of the above mentioned coefficients 
Tr(XAJAX,), but by means of the symmetrised coefficients [wpA6] defined through 
the traces Tr(X,&XAX8) by the relation 

It is evident that the coefficients [wpAG] are totally symmetric in all four indices. The 
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Casimir operator of the Micu type for the algebra Sp(4) is then given by 

1 [wph~5]x*X’X~X~, 
wpA6 

The only non-zero coefficients in this sum are 

[e le - lhhl l=  A, [hlhlhlhll=hz, [hlh1e4e-J =A, 
[ele-2e4hz] = -&2-”’, [h2hzhzh2] =A, [hzhze-4e41 =A, 
[eze-2~1~21= A, [hzhze3e-31 = B ,  [hlhzeze-~l = -m, 

[ h ~ h ~ e ~ e - ~ l  =m [hlh2e4e-41 = m, [ele-lele-ll =m, 
[ e ~ e 2 e - ~ e - ~ l =  m, 1 [eie3e-ze-z] =216, 1 [hle_,eze4] = -&2-1’2, (29) 

[e4e4e-4e-41 = m, 1 [e-1e3e-4e-4]=-&, ~ e ~ e ~ e - ~ e - ~ ] = & ,  

1 1 

1 1 1 

1 

1 1 1 

[eze-4e-~e41= m, 
[%e-3eze-z] Le3e-3e4e-41 =Ti& [ele-le4e-41 =m, 
[e1e-1eze-z1 = 43, 
and the terms which arise from the above mentioned by the change of the root r to 
-r  at all the generators which enter in the corresponding product. Apart from the 
last four brackets [ , , , 3 all the others are given in the paper by Micu (1964) (the last 
four brackets were obviously forgotten by him). 

The Casimir operator of the Micu type is formally evidently much simpler than 
the Casimir operator 

1 Tr( XzAXdr, ) x *xPx *xu. (30) 
The open problem which is left is, if a possibility of defining a generalisation of 

the brackets for the whole graded Lie algebra osp( 1,4)  exists, i.e. whether a possibility 
of finding the formally simpler formula for the Casimir operator of the fourth degree 
even for the case of the graded algebra exists. 

Appendix 1. 

The explicit fundamental (five-dimensional) representation of the graded algebra 
osp( 1 ,4)  (Bednii  and Sachl 1978b) 

1 E - -  
l-h 

1 j, 
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1 
V4=- 2A 

I . . . . .  

E3-J;j 1: : - 1  : : ] ,  
. . . . .  
. . . . .  

I '  

\ *  . . .  

\ .  . . .  . /  

I . . . .  

Y o  = 1: : 1 1 :I, 
* . .  
. . .  . -1 

Appendix 2. 

. . . . .  

. . . .  

H * = -  
2J3  

I '  

\ -1 

1 :I7 
. .  . - I  . 

++1 1). 
The coefficients Tr( yoX,,X,X,X,,) of the Casimir operator of the fourth degree of 
the superalgebra osp(l ,4)  with all even generators and those which contain the odd 
generators can be given in the form of tables 1 and 2 respectively. The corresponding 
permutations of these generators are given in the first column. 
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t t t  9 9 -9'-9 

2 - 9  2 - 3  z9 z9 

E -3 E -3 E3 E3 

I-9 IF9 I9 lg 

*P9 E -3 H 

v 3 t - 9 Z ~ r ~  

2 - 2 2  I 3 3 H H  

*P-s~H~H 

* P - E I I H  ' H  

2 - 2 2 2  3 3 H H  

2-  2 I 3 3 H'H 

2 2 2 2  H H H H  

E - E 2 2  9 3 H H  

I- I 1 3 9 H'H 

' H ' H ~ H ' H  

N N N N N N N 

N N  

- 3  

3 -  

N 

3 

3 

3 
I 

3 

3 

3 
I 

3 3 

I I 

3 3 

I I 

- 3 

3 3 

I I 

3 3 
I I 

3 3 
I I 

3 3 

3 3 

I I 

3 3 

I I 

3 3 

I I 

3 - 
3 - 
I I 

N 

PI 

3 

3 

3 
I 

3 
I 

- 
w 
I 

3 3  3 - 3 3  3 3 3  3 3 3 3  3 3 3  

3 3  3 3 3 3  3 3 3  - - 3 3  3 3 -  

3 3  3 - 3 -  3 3 3  3 3 3 3  3 3 3  

N N N N N N N N N N N N N N N N N N N N N N N N  
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3 
I 

3 
I 

3 

I 

3 

3 
I 

3 
I 

M -  

I 

3 3  
I 

I 

I 

3 

- 
I 

3 
I 

3 

n 

- 3 3 3  

I I  
3 

3 

3 
I 

Z Z t E  H93-2 

P t E  3 9 -g': 

zgzgE-gl - i  

3 3 - 3  

I I  
3 
I 

3 3  

I I  

3 3  

" -  
l l  

3 3  

3 
I 

3 

3 3  
I 1  

3 3  

I I  

3 3  

i n  

3 
I 

3 3  

I /  

3 -  

3 

I 

3 

3 3 3  

3 

3 3 3  

3 3  3 

3 

- *  n 

3 3 - 3  

3 i  

i 

3 - 3 3  

I I  

" 3 3 1  

I I  

- 3  3 3  3 1  - 3  
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- 1  f 
d - I  f 

31 F 

- I  2 
- I  F 

d - I  f 

- I  9 d 

'AEA2A 'A 

' L E *  H 3 A A  

t - P E  z 3 3 A A  

2 - Z E L  3 3 A A  

ZHP3'AEA 

E - f f Z  3 3 A A  

Z ~ ' - ~ P ~  2~ 

' - ' P I  3 8 A A  

' H ~ - s ~ A  [A 

z ~ z ~ f ~  *A 

'HP3 'A  'A  

P- P P 3 3 A ' A  

z ~ z - 3 z ~ 1 ~  

' H * - ~ * A  z~ 

1 lH'-3'A'A 

' A  'A  'A  ' A  

2 ~ Z ~ E ~ 2 ~  

' A  'A 'A 'A  

- 
I 

3 

- 
I 

A -  

l l  

c ( r (  

I 

- 3  

I 

I 

3 4  

I 

3 

3 

- 
I 

- 
I 

- -  
I 

I 

I 

I 

3 

I 

3 -  
I 

A 

- -  
I 

-.. 
I 

- 3  
I 

I I  

I I  

3 

3 

3 
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